pbootcms网站模板|日韩1区2区|织梦模板||网站源码|日韩1区2区|jquery建站特效-html5模板网

<legend id='bHONV'><style id='bHONV'><dir id='bHONV'><q id='bHONV'></q></dir></style></legend>

        <bdo id='bHONV'></bdo><ul id='bHONV'></ul>
    1. <small id='bHONV'></small><noframes id='bHONV'>

        <i id='bHONV'><tr id='bHONV'><dt id='bHONV'><q id='bHONV'><span id='bHONV'><b id='bHONV'><form id='bHONV'><ins id='bHONV'></ins><ul id='bHONV'></ul><sub id='bHONV'></sub></form><legend id='bHONV'></legend><bdo id='bHONV'><pre id='bHONV'><center id='bHONV'></center></pre></bdo></b><th id='bHONV'></th></span></q></dt></tr></i><div class="nzpthfp" id='bHONV'><tfoot id='bHONV'></tfoot><dl id='bHONV'><fieldset id='bHONV'></fieldset></dl></div>

        <tfoot id='bHONV'></tfoot>

        我可以預測我的 Zend Framework 索引有多大嗎?(以及

        Can I predict how large my Zend Framework index will be? (and some quick Q:s)(我可以預測我的 Zend Framework 索引有多大嗎?(以及一些快速的 Q:s))
        • <legend id='dTG54'><style id='dTG54'><dir id='dTG54'><q id='dTG54'></q></dir></style></legend>
            <tbody id='dTG54'></tbody>

            <i id='dTG54'><tr id='dTG54'><dt id='dTG54'><q id='dTG54'><span id='dTG54'><b id='dTG54'><form id='dTG54'><ins id='dTG54'></ins><ul id='dTG54'></ul><sub id='dTG54'></sub></form><legend id='dTG54'></legend><bdo id='dTG54'><pre id='dTG54'><center id='dTG54'></center></pre></bdo></b><th id='dTG54'></th></span></q></dt></tr></i><div class="pdzv5xh" id='dTG54'><tfoot id='dTG54'></tfoot><dl id='dTG54'><fieldset id='dTG54'></fieldset></dl></div>

            <small id='dTG54'></small><noframes id='dTG54'>

            <tfoot id='dTG54'></tfoot>
              <bdo id='dTG54'></bdo><ul id='dTG54'></ul>
                • 本文介紹了我可以預測我的 Zend Framework 索引有多大嗎?(以及一些快速的 Q:s)的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                  問題描述

                  我在一個 mysql 表中有大約 100000 行,其中 每行大約有 8 個字段.

                  I have around 100thousand rows in a mysql table, where each row has about 8 fields.

                  我終于掌握了如何使用 Zend Lucene 從 mysql 表中索引和搜索數據.

                  I have finally got the hold on how to use Zend Lucene to index and search data from a mysql table.

                  在我的網站完全實現此功能之前,我有一些問題:

                  Before I fully implement this funcionality to my website, I have some questions:

                  1- 是否可以提前確定索引的大小?這是因為在 Zend 手冊中它說索引的最大大小是 2GB.我立刻認為這對我的桌子來說還不夠!

                  1- Is it possible to determine the size of a index in advance? This because in the Zend manual it says the max size of a index is 2GB. I am straight away thinking that isn't enough for my table!

                  2- 我讀過一些帖子,他們說 Zend Lucene 搜索在大型索引上非常慢,最多幾分鐘!直接使用 mysql 命令(SELECT、LIKE 等)而不是 zend 會更快嗎?

                  2- I have read posts where they say Zend Lucene search is very slow on large indexes, up to minutes! Is it faster to use mysql commands directly (SELECT, LIKE etc) instead of zend?

                  3- 是否有其他解決方案可以解決我的問題,即為具有 這些功能至少,并且不需要全文mysql索引(字段).

                  3- Is there any other solutions to my problem which is to create a search engine for classifieds which has these functions atleast, and doesn't require full-text mysql indexes (fields).

                  謝謝

                  推薦答案

                  SOLR 基本上是一個 Apache Tomcat 容器,它實現了一個 REST 接口來查詢 Apache Lucene 索引.是的,您需要能夠在您的 Web 服務器上運行 Java 應用程序.這是您需要與您的托管服務提供商解決的問題.

                  SOLR is basically an Apache Tomcat container that implements a REST interface to query an Apache Lucene index. Yes, you need to be able to run a Java application on your web server. This is an issue for you to work out with your hosting provider.

                  使用您的網絡應用程序的客戶端不需要運行 Java.您的 PHP 應用程序可以對 SOLR 服務進行 REST 查詢,并將結果格式化為 HTML.客戶端只能看到 HTML 輸出;它永遠不需要知道數據來自用 Java 實現的服務.

                  Clients using your web app don't need to run Java. Your PHP app could make a REST query to the SOLR service and format the results in HTML. A client sees only the HTML output; it never needs to know that the data came from a service implemented in Java.

                  Zend_Search_Lucene 是一個純 PHP 實現,應該與 Apache Lucene 的工作方式相同.Zend 解決方案甚至使用相同的索引文件格式.所以在存儲方面它們應該是相等的.

                  Zend_Search_Lucene is a pure-PHP implementation that is supposed to work identically to Apache Lucene. The Zend solution even uses an identical index file format. So storage-wise they should be equal.

                  我使用 Java Lucene 為 StackOverflow 數據轉儲(2009 年 10 月)建立索引.我索引了 150 萬行,包括大約 1 演出的文本數據.Lucene索引是1323MB,而同樣數據的MySQL FULLTEXT索引只有466MB.

                  I used Java Lucene to index the StackOverflow data dump (October 2009). I indexed 1.5 million rows, including about 1 gig of text data. The Lucene index was 1323 MB, whereas the MySQL FULLTEXT index of the same data was only 466 MB.

                  使用 SQL LIKE 謂詞代替任何全文索引解決方案當然不需要空間,因為它無論如何都不能使用常規索引.但是在我使用 LIKE 的測試中,它比 Java Lucene 慢了大約 200 倍,而 Java Lucene 又比相同數據上的 MySQL FULLTEXT 索引慢了大約 40%.

                  Using SQL LIKE predicates in lieu of any fulltext indexing solution requires no space of course, because it cannot make use of a conventional index anyway. But in my tests using LIKE was about 200 times slower than Java Lucene, which was in turn about 40% slower than a MySQL FULLTEXT index on the same data.

                  查看我最近關于 MySQL 全文索引解決方案的演示:

                  See my recent presentation about fulltext indexing solutions with MySQL:

                  http://www.slideshare.net/billkarwin/practical-full-text-search-with-my-sql

                  它無法與 Java Lucene 技術的性能和可擴展性相媲美,這并不奇怪.PHP 作為一種語言的優勢在于提高了開發效率,而不是運行時效率.

                  It's not surprising that it can't match the performance and scalability of the Java Lucene technology. PHP's advantage as a language is increasing development efficiency, not runtime efficiency.

                  更新:我剛剛嘗試使用 Zend_Search_Lucene 創建索引.使用 PHP 創建索引比使用 Java Lucene 技術慢得多,所以我只索引了 10,000 個文檔.這花了將近 15 分鐘,這將使索引整個集合需要大約 36 小時.將此與 Java Lucene 進行比較,Java Lucene 在我的測試中在 7 分鐘內索引了 150 萬個文檔的完整集合.

                  update: I just tried creating an index using Zend_Search_Lucene. Creating an index is far slower with PHP than with the Java Lucene technology, so I only indexed 10,000 documents. This took almost 15 minutes, which would make it take about 36 hours to index the whole collection. Compare this to Java Lucene, which in my test indexed the full collection of 1.5 million documents in under 7 minutes.

                  我使用 Zend_Search_Lucene 創建的索引大小為 8.75 MB.推斷這個 150 倍,我估計完整索引將是 1312.5 MB.所以我得出結論,Zend_Search_Lucene 創建的索引與 Java Lucene 生成的索引大小大致相同.這符合預期.

                  The size of the index I created with Zend_Search_Lucene is 8.75 MB. Extrapolating this 150x, I estimate the full index would be 1312.5 MB. So I conclude that Zend_Search_Lucene creates an index of about the same size as the index produced by Java Lucene. This is as expected.

                  這篇關于我可以預測我的 Zend Framework 索引有多大嗎?(以及一些快速的 Q:s)的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                  【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                  相關文檔推薦

                  Deadlock exception code for PHP, MySQL PDOException?(PHP、MySQL PDOException 的死鎖異常代碼?)
                  PHP PDO MySQL scrollable cursor doesn#39;t work(PHP PDO MySQL 可滾動游標不起作用)
                  PHP PDO ODBC connection(PHP PDO ODBC 連接)
                  Using PDO::FETCH_CLASS with Magic Methods(使用 PDO::FETCH_CLASS 和魔術方法)
                  php pdo get only one value from mysql; value that equals to variable(php pdo 只從 mysql 獲取一個值;等于變量的值)
                  MSSQL PDO could not find driver(MSSQL PDO 找不到驅動程序)
                • <legend id='DAeKR'><style id='DAeKR'><dir id='DAeKR'><q id='DAeKR'></q></dir></style></legend>
                    <bdo id='DAeKR'></bdo><ul id='DAeKR'></ul>

                      <i id='DAeKR'><tr id='DAeKR'><dt id='DAeKR'><q id='DAeKR'><span id='DAeKR'><b id='DAeKR'><form id='DAeKR'><ins id='DAeKR'></ins><ul id='DAeKR'></ul><sub id='DAeKR'></sub></form><legend id='DAeKR'></legend><bdo id='DAeKR'><pre id='DAeKR'><center id='DAeKR'></center></pre></bdo></b><th id='DAeKR'></th></span></q></dt></tr></i><div class="7thd7tn" id='DAeKR'><tfoot id='DAeKR'></tfoot><dl id='DAeKR'><fieldset id='DAeKR'></fieldset></dl></div>
                        <tfoot id='DAeKR'></tfoot>

                        <small id='DAeKR'></small><noframes id='DAeKR'>

                          <tbody id='DAeKR'></tbody>
                            主站蜘蛛池模板: 黑龙江京科脑康医院-哈尔滨精神病医院哪家好_哈尔滨精神科医院排名_黑龙江精神心理病专科医院 | 今日热点_实时热点_奇闻异事_趣闻趣事_灵异事件 - 奇闻事件 | 深圳宣传片制作_产品视频制作_深圳3D动画制作公司_深圳短视频拍摄-深圳市西典映画传媒有限公司 | 镀锌钢格栅_热镀锌格栅板_钢格栅板_热镀锌钢格板-安平县昊泽丝网制品有限公司 | 釜溪印象网络 - Powered by Discuz!| 四川成人高考_四川成考报名网 | 冷凝锅炉_燃气锅炉_工业燃气锅炉改造厂家-北京科诺锅炉 | 钢结构厂房造价_钢结构厂房预算_轻钢结构厂房_山东三维钢结构公司 | 武汉创亿电气设备有限公司_电力检测设备生产厂家 | 神马影院-实时更新秒播| HYDAC过滤器,HYDAC滤芯,现货ATOS油泵,ATOS比例阀-东莞市广联自动化科技有限公司 | 电缆桥架生产厂家_槽式/梯式_热镀锌线槽_广东东莞雷正电气 | 上海律师咨询_上海法律在线咨询免费_找对口律师上策法网-策法网 广东高华家具-公寓床|学生宿舍双层铁床厂家【质保十年】 | HDPE土工膜,复合土工膜,防渗膜价格,土工膜厂家-山东新路通工程材料有限公司 | 隧道风机_DWEX边墙风机_SDS射流风机-绍兴市上虞科瑞风机有限公司 | 安平县鑫川金属丝网制品有限公司,声屏障,高速声屏障,百叶孔声屏障,大弧形声屏障,凹凸穿孔声屏障,铁路声屏障,顶部弧形声屏障,玻璃钢吸音板 | 根系分析仪,大米外观品质检测仪,考种仪,藻类鉴定计数仪,叶面积仪,菌落计数仪,抑菌圈测量仪,抗生素效价测定仪,植物表型仪,冠层分析仪-杭州万深检测仪器网 | 防锈油-助焊剂-光学玻璃清洗剂-贝塔防锈油生产厂家 | 清管器,管道清管器,聚氨酯发泡球,清管球 - 承德嘉拓设备 | 小型铜米机-干式铜米机-杂线全自动铜米机-河南鑫世昌机械制造有限公司 | 上海阳光泵业制造有限公司 -【官方网站】| 岩石钻裂机-液压凿岩机-劈裂机-挖改钻_湖南烈岩科技有限公司 | 合金耐磨锤头_破碎机锤头_郑州市德勤建材有限公司 | 自动气象站_气象站监测设备_全自动气象站设备_雨量监测站-山东风途物联网 | 继电器模组-IO端子台-plc连接线-省配线模组厂家-世麦德 | 超声波破碎仪-均质乳化机(供应杭州,上海,北京,广州,深圳,成都等地)-上海沪析实业有限公司 | 油冷式_微型_TDY电动滚筒_外装_外置式电动滚筒厂家-淄博秉泓机械有限公司 | 3A别墅漆/3A环保漆_广东美涂士建材股份有限公司【官网】 | 聚合氯化铝-碱式氯化铝-聚合硫酸铁-聚氯化铝铁生产厂家多少钱一吨-聚丙烯酰胺价格_河南浩博净水材料有限公司 | 铝镁锰板_铝镁锰合金板_铝镁锰板厂家_铝镁锰金属屋面板_安徽建科 | 顺景erp系统_erp软件_erp软件系统_企业erp管理系统-广东顺景软件科技有限公司 | 首页 - 军军小站|张军博客 | 有机废气处理-rto焚烧炉-催化燃烧设备-VOC冷凝回收装置-三梯环境 | 【法利莱住人集装箱厂家】—活动集装箱房,集装箱租赁_大品牌,更放心 | 高柔性拖链电缆-聚氨酯卷筒电缆-柔性屏蔽电缆厂家-玖泰电缆 | 砂石生产线_石料生产线设备_制砂生产线设备价格_生产厂家-河南中誉鼎力智能装备有限公司 | 铝合金脚手架厂家-专注高空作业平台-深圳腾达安全科技 | 成都离婚律师|成都结婚律师|成都离婚财产分割律师|成都律师-成都离婚律师网 | 便携式高压氧舱-微压氧舱-核生化洗消系统-公众洗消站-洗消帐篷-北京利盟救援 | 同学聚会纪念册制作_毕业相册制作-成都顺时针宣传画册设计公司 | 恒温恒湿试验箱厂家-高低温试验箱维修价格_东莞环仪仪器_东莞环仪仪器 |